
Office of Naval Research 
2= 

Contract N50RI-76  • Task Order No. 1 • NR-078-Oil 

C5 CO 

THE RADIATION OF A HERTZIAN DIPOLE 
OVER A COATED CONDUCTOR 

Donald B. Brick 

May 10,1353 

Technical Report No. 172 

Cruft Laboratory 
Harvard University 

Cambridge, Massachusetts 



Office of Naval Research 

Contract N5ori-76 

Task Order No. 1 

NR-078-011 

Technical Eeport 

on 

The Radiation of a Hertzian 

Dipole over a Coated Conductor 

by    

Donald B. Brick 

May 10, 1953' 

The research reported in this document was made possible 
through support extended Cruft Laboratory * Harvard Univer- 
sity, jointly by the Navy Department (Office of Naval 
Research)," the Signal Corps of the U. S. Army, and the 
TJ. S. Air Porce under ONR Contract N5orl-76, T. 0. 1. 

Technical Report No» 172 

Cruft Laboratory 

Harvard University 

Cambridge4 Massachusetts 

I 



TH172 
* 

The Radiation of a Hertzian s 

Dipole over a Coated Conductor 
-> 

by 

Donald B. Brick 
—-SSI 

Cruft Laboratory, Harvard University 

Cambridge, Massachusetts 

Abstract 

The idealized problems of (a) an infinitesimal Hertzian 
dipole in and over a perfect dielectric coating a perfect 
conductor arid (b) as Abraham dipole lying on the conductor 
are treated. Unintegrated forms of the Hertz potentials are 
obtained for both electric and magnetic dipoles. J 

Integrated far-zone forms of the potentials and fields 
are obtained for electric dipoles by means of asymptotic 
integrations. Par-zone radiation patterns are given in 
order to indicate the distortions of the fields and the 
magnitudes of the residue waves caused by the dielectric 
coatings. 

It is proved that the power radiated by the dipole may 
be divided into two independent quantities-the power fed to 
radiation type and that fed to surface or guided type fields. 
For certain cases numerical results are given for the total 
power radiated and the relative powers fed to the two types 
of fields. 

Formulas are derived and illustrated with numerical 
examples of the radiation resistances of the dipoles and 
the attenuation constants of the surface modes due to finite 
conductivity of the ground plane. 

I. 

Introduction 

A study of the coated conductor problem was undertaken in 

an effort to explain certain characteristics of an antenna 

• 
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field pattern obtained from measurements taken over an 

aluminum ground screen. The effect of the finite conductivity 

of the aluminum did not yield an adequate explanation of the 

observed characteristics near the ground screen and subsequent 

measurements showed that the phenomenon could be emphasized by 

the addition of a dielectric layer to the ground plane. Since 
a dielectric coated metallic surface can support a guided wave 

for any thickness of coating, it was deduced that the thin 

coating of aluminum oxide present on the ground screen was 

responsible for the behavior» 

The idealized problem involves a uniform layer of perfect 

dielectric covering an infinite*perfectly-conducting plane$ a 

Hertzian dipole is in one of three positions? Case A, above 

the dielectric § Case B, in the dielectric$ or Case C9 an Abraham 

dipole on the plane, Fig. I. Unintegrated expressions are 

derived for the Hertz potentials in and above the dielectric 

due to both vertical electric and magnetic dipoles. For the 

special cases of vertical electric dipoles in or near fairly 

thin dielectric coatings the integrated forms of the far-zone 

fields are obtained. Marcuvitz has derived a similar ex- 

pression for the Hertz potential above the dielectric due to 

a dipole above but near a thin dielectric coating by a some- 

what different method. The mathematical details of this 

problem are similar to those of the vertical dipole over a 

conducting earth. »J 

The resulting fields, comprising a radiated-type wave 

(or compensating wave) and one or more guided-type waves, 

have been combined at typical distance for a polystyrene coating 

to yield field patterns. Several examples of these are given 

illustrating the distortion of the patterns due to dielectric 

layers. To further illustrate this distortion, expressions 

are derived for the total power output of the dipole, the ratio 

of the powers in the guided and radiated waves, and the radiation 

resistances of the dipoles. *here possible in the illustrative 
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curves of these expressions, comparison curves for metal 

surfaces without dielectric coatings are given* In addition, 

the expression for the attenuation constants of the guided 

waves due to finite but large conductivities of the conducting 

plane is derived. No attempt is made at this time to compute 

the attenuation due to conductivity of the dielectric•• A good 

approximation to this attenuation is given by Attwood. 

II 

Formulation 

Let an infinitesimal electric Hertzian dipole, a magnetic 

dipole, or an Abraham dipole be oriented along and parallel to 

the a=axis of the cylindrical coordinate system r, 9, z, Fig. Io 

This system is independent of 6. Region I, d — zioo, with 

constants e, u, <r - o, is the space above the dielectric; region 
2, with constants n e, n, o- = o, o ^ z ^ d, is the dielectric 

region§ and region 3, z i o is a perfect conductor with or = oo 
The dielectric constant of medium 2 relative to that of medium 

1 is n , where n is the index of refraction. 

As is well known the electromagnetic field excited by electric 

or magnetic sources oriented in the z - direction of a cylindrical 
coordinate system may be derived from the a - components of the 

electric or magnetic Hertz vectors. Hence, the problem will be 

formulated in terms of these components. 

The problem is subdivided into five divisions according to 

the positions of the dipoles and as to whether the electric or 

magnetic case \s  treated. The harmonic time dependence e    is 

assumed throughout and is cancelled in all expressions. 

-iwt 1a 

*- >t To convert to dependence e«^ substitute j for -i. 
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Vertlcal Electric Plpoles 

Case A    A Hertzian dipole above the dielectric at 

d^z,<co,rtSE0. 

P     9    p,(z')6(z-z«)8(r) 
1. V ni + P ni **""* 2ner      Region 1 

(A)   (A) 

2. V
2TT

2 
+ Q2

P
2TT

2 
= ° Region 2 

(A) (A) 

Case B    A Hertzian dipole in the dielectric at 

0<z'<d, r1 = 0. 

3„  v 2"x + P
2"! - 0 Region 1 

(B) (B) 

P-    p V-    Pp(z' )8(z-z«)6(r) 
4»  V "p + n P tTp = - — 5  

(B)   (B) 2nn~er Region 2 

Case C    An Abraham dipole on the ground plane at 

Region 1 

r« = 0. 

5» V 2tr1 + p2^ * 0 
(C)       (C) • 

6o 2              2 2 
V   tin •* nT«2 "* * 

(C)        (C) " 

P2(o)6(z)5(r) 

4rm er 

The appropriate boundary conditions are; 

dn.. dffp 

b) 
p 

eTr1(r,d,z*,) = n, etT2(r,d,z') 

• 

Region 2 
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dn. 

d)    The Sommerfeld condition of radiation,'» 

where? 

TtniT^z^z*)    is the z-component of the electric Hertz 
vector in region lo 

TT2(r,z,z') is the z-component of the electric Hertz 

vector in region 2. 

These are defined by: 

8. —»•*• \       a* 
E, drdz '-]•>&-m*- n. n   I     TTr 

B 

~BV 
17 - 31 w    5r      2 n TT- 

The upper quantities in the brackets are valid in region 1 

and the lower quantities in region 2. 

s    to )/B\I 3  s 

*2 = relative dielectric constant of region 2 
with respect to region 1. 

is a vertical Hertzian dipole at z* 
p^z') 

P2(z») 

P2^°V2  is an Atranam dipole at z1 = .0 

« -, a    a    3 2     The Laplacion operator 
STM  « "5? (r 3r) + •fl5 =    in the cylindrical co- 

dz      ordinate system with no 
0 dependance. 

j*»i      is tne Dirac delta-function for a source 
dT(r at z • z« r - 0. 
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Vertical Magnetic Dlpoles 

Case A      A magnetic dipole above the dielectric at 
d < z' ^LCD , r' =0 

U-   V \l  + 3 "ml = "      2rrr      ReSion X 
(A)    (A) 

12.  V2TTm2 
+ ^P2"^ = ° Region 2 

(A)     (A) 

Case B     A magnetic dipole in the dielectric at 
0 < z'<d, r« = 0 

x3-  ^"ml + p2nml = ° Region 1 
(B>    (B) 

0 0 0 |ija9(z')5(z-z')6(r) 
14'  ^ V> + n P nm2 = ° •      2^     Region 2 

CB?     (B) 

One should note that the problem of a magnetic dipole placed 
at z1 =0 need not be formulated since according to the theory 
of images it yields fields which are identically zero. 

The appropriate boundary conditions are 

subject top,, =Hp =l1 

c) rr^Cr^z') = 0 

d) The radiation condition.y» 
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Where: 

nm2(p»z'z,) J 

These are defined by 

11ml(r»z»z,> > 

-7- 

is the z-component of the magnetic 

Hertz vector in {r«gion 1 

(reglon 2 

16. 

17- 

E 

Jlm 

2m_ 

TT. ml 
TT. m2 

lm 

W2 

dr^z  ml 

TT. m2 

Where the subscript m indicates quantities in the magnetic 

cases and 

B^CZMI 

m2(z') 
is a vertical magnetic dipole at z'< 

d£z»£oo 

o<z's d 

Since the problem is formulated in cylindrical coordinates 

with 9 - symmetry it is- convenient to apply the well-known 
7 

Fourier - Bessel or HanJcel Transform pair'for 0 symmetry to 

equations 1-6 and 11-14. 

? 18.   n(\,z,z» ) = / rTT(r,z,z» )J0(Xr)dr 

"•I 19.   n(r,z,z' *S(x,z,z« )ZA\T)&\ 

After applying equation 18 to the equations 1-6 and 11-14, 

performing an integration by parts, and applying the radiation 

condition* to the left sides of these equations, the following 

The quantity [j£ rJo(\r) -nrXj^CXr)]  appears after the inte- 
gration by parts. This disappears identically at r=o and at r 
the radiation condition 5,6 requires its disappearance. 

= oo 
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results are obtained for the left sides of these equations? 

for equations 1, 3, 5, 11, 13 

^ 2 
(• 

dz 
42)nx or 

"J, 

for equations 2, 4, 6, 12, and 14- 

(-4  - n2) n2 . 
az' BL, 

20. 

21, 

0 2     2 
wheret  and m are defined? 

I2 -?*.2 - a2 

m2 = K2  - n2p2 

After noting that the application of equation 18 to the 

right sides of equations 1, 4, 6, 11 and 14 yields the value 

l/2fr, the following transformed equations are obtained? 

22. 

6 -e*.J 

"1 
(A) 

*1 
(B) 

"l 
(C) 

"ml 
(A) 

"ml 
(B) 

2ne 

\m1{zt )8(z-z' ) 
2n 
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23 

P2(z»)8(z-z') 
*5" 

2^8 

TT. m2 
(A) 

TT. m2 

P2(0)5(z) 

 TT  4nn e 

linuCz^SCz^s1) 

2ff 

These are the transformed forms of equations 1, 3» 5, 11, 13 

and 2, 4, 6, 12, and 14 respectively. These satisfy boundary 

conditions 7 a-d and 15 a-d as can be seen from equations 18 and 

19 assuming that the order of integration and differentiation, 

with respect to z, may be interchanged. 

According to the physical considerations of these problems 

it is convenient to substitute the following forms in equations 

22 and 23.  If these satisfy the equations and boundary conditions 

they are the unique solutions of the problems except for an arbi- 
o 

trary constant in time.  The subscripts indicate the equation 

to which each trial solution belongs. 
^ 

24. etf1(X.,z,a
f) 

J8L-. 

4lfE e 

"ml(X'z<z,) 

LAL. 
urn^z1) _, + 

-flz-z»| -£(z+z'-2d)*2md 
+B(X,z»)e,        e 

+ ca,zi)c-f(z+z,-2d^ 
Where the first term is the incident wave or the wave radiated 

by an isolated source, the second term is a wave reflected from 

the metal surface, and the third term represents a wave reflected 
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from the dielectric surface* 
•\ 

25. EtT2(X.,Z,2t ) 
LAI 

p-.Cz*; 
> s 

urn^U*) 

D(X.,z')e 
-[f |d-z» I + m(d-z)] 

+E(\,z' )e 
-ii Id-z1I  +m(d+z)] 

Where the first term is a wave transmitted into the dielectric 

and the second term Is a wave reflected from the metal surface. 

26.        n etT2(X.,z,zl) 
ill 
P^a1) 

2n2etr2(X,z,0) 
 iCl  

,        -m|z-j5*| 
V= -A- e 

P2(o) 

nn^Cz* J 

4tTm 

,     -m(2d-z-z') 
+ F (\z )e 

-m(z+z*) 
+ G (X,z»)e 

z»  = 0 for case C. 

Where the first term is the incident wave, the second 

term is a wave reflected from the boundary z = d, and the 

third term Is a wave reflected from the metal boundary. 
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27. n en^(X.,z,zl) 

(B) 
P2U') 

2n en.^X.jZ,©) 

P2 «f ^ = H(V,)Ot(z""d)> 

nml(Vz,zl) 
XBi ^ 

where this term represents a wave radiated from the 

dielectric surface. 

It mav be observed that the left sides of equations (24-27) 

are the Green's functions for equations (22-23). The proper 

choice of the coefficients of the first terms on the right 

sides of equations (24) and (26) gaurantees that these equations 

satisfy the conditions for the Greens functions at z - z*. 

Substituting equations equations (24-27) in their proper 

boundary conditions 7a-d or 15a-d, it may be verified that the 

trial solutions 24-27 indeed do satisfy the boundary conditions. 

Evaluating the constants B(\,'z') through H(X-,z') yields the 

transformed Hertz potentials. Applying the Pourier-Bessel 

integral, 19, rearranging the resulting integrals, and using 

equation (28),^ yield the Hertz potentials, 29-38, which are 

the solutions to equations (1-6) and (11-14). 

28. 1        f     JoC\r) e 
-izi V\2-k2 

   \A\ - 
ik Vr2+z2 

e 

*rf r2+z2 
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Vertlcal Electric Dipoles 

Case A 

29.        fi^Cr,!,!') • p1(»0 
(A) 4TTS" 

Case B 

Case g 

+ 2 
/o 

L   R* R" 

V coshm4jL"^(2+Z,"2d) \Jo(fcr)d\ 

Region 1 

CO 

30.        TT2(r,z,z') = p1(z«)      f     cosh mz e   ~^(zr~d)XJo(\r)a\ 
(A) 2nen2      ^°     M(p,\,n,d) 

Region 2 

31.        i^C*,*^*) " TT2(r,z
r,z) p2(z»)    - 

») (A) ^IJ 

;•)       /       cosh mz'e 
iZ      Jo      M(p,\,n,d) 

I - 2    /      (<*- m/n2)coshmz, coshmze     XJo(Xr)dX 

mM(3,X,n,d) 
Region 2 

33*       n^r^O) * p2(0)       j     e"^(z~d^jo(\r)dX 

(C) 4^2        ° «^M) negionl 

! 

p (ziA      /      •* «... "•8(z"d)XJo(\r)d\ I 

2tTert^ 
Region 1 

32.        n2(r,z,r») = p2(z')      e + e | 

<B) We       LH7 RV I 
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34.    rr2(r,z,0) = p2(0)       ein{3R -   j     (^-ro/n2)coshmz e~md\J0(\r)a\ 
(c) 4Tm2e R l'° m M(3,X,h,d) 

Region 2 

Vertical Magnetic Dipoles 

Case A 

35*   "mi^i2^'^ = ^i^2') 
(A) 4fT 

e13R_» ei0R" 
R1-        R" 

.,    ?  slnhnd      e -*(z+z'-2d)\J (\r)d\l 

•to J   Region 1 

36.    TTm2(r,z,z') = nm^z')      j    sinhmz e"*(z'"d)X^)(^)dA. 
(A) ~~2T7 Jo    NO,\,nd) ° Region 2      i 

Case B 

37' "ml^*2*2^ = "m2
(r»z'z)m2(z,) 

= tim2(z«) r sinhmz*  e -f(z-d) 

2n   X KO,\,n,d) 

XJQ(\r)dX 

Region 1 

•, ,..^= ..«. r.n l\i0R'_ -i0RV 
m2 38. tr (r,z,z») = nm2(z«) I ^. ef^ 2 r^- •. 

,V 

-2 j  (t-m)sinhmz'slnhmz e"md\J0(Xr)d\l 

Jo      mNO,X.,n,d)      "     J 
Region 2 

Where 

39. K(9,X,n,d) = tcosh md + ^ slnh md 
0 n 

40. N(0,X,n,d) =tsinh md + m ^osh md. 
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R is the spherical coordinate distance of Figs. 2a and 2c. 

=yvv^ 
R« =V r2 + (z-z«)2     Fig 2a 

R»  = "/r2 + (z+z!-2d)2  Fig 2a 

-Y V =1/.2 . ,_ ,„n2 Rv =y r£ + (z+z«) 

It is to be observed in equations 29-38 that the forms of 

the integrands of the unintegrated  terms indicate that these 

are standing wave distributions or multiple reflections of the 

waves from the dielectric and metal surface in region 2," the 

dielectric region. The integrated terms indicate that the 

dipoles are imaged in the dielectric or metal surface. 

The E and B fields may be derived through the application 

of equations 8 and 9 or 16 and 17, 

III 

Far-Zone Formulations of the Hertz Potentials 

The Hertz potentials TT. and fr2 for vertical electric 

dipoles are asymptotically integrated to obtain far-zone 

expressions with the restriction of thin dielectric coatings. 

The integrations of equations 2.29-2.31 and equation 2.33, 
Appendix A,' are similar to those performed by Tai  and 

11 12 
others. '   Equations 2.32 and 2.34 are integrated using 

the method of Van Der Waerden, *  Appendix B. 

The integrals in equations 2.29-2.34 are transformed 

to a symmetric form for r> o: 

(1)   / F(*-)J0(Xr)Xd\ * \   I      7(\)U*{\T)X&\ 

Jo J-a> 



Z + Z-2d 

FIG. 2a   COORDINATES  FOR   CASE   A-1 

FIG. 2 b   COORDINATES   FOR   CASE   A-2 

Vz-d 

FIG. 2c     COORDINATE FOR CASE B-l AND C-| 
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14 through the use of: 

- 1 rtr l/"!^ ± n 2/ 

and 

where: 

J0(^r) = ± CH0
x(Xr) + H^CXr)] 

ff0
2(Xj-) = - H0

x(-Xr) 

F(\) is an even function of X., and HQ (Xr) is chosen in 
order to yield outward travelling waves for real positive Xe 

The integrands in equations 2.29 - 2.34 have first-order 
poles where M(3,X9n,d) = 0, equation 2.39, or for solutions of: 

(2) ± n2 V\2-32 = + VnV-X2 tan(dVnV->L2) 

Examining equation (2) in the light of equations 2.29 - 2.31, 
it is found that I  and m must be either positive real or negative 

5 6 imaginary numbers in order not to violate the radiation condition. » 
It is also observed that solutions exist only for the same sign 
on both sides of equation 2 and that the roots must satisfy: 

(3) 3^^<np 

Figure 4 contains curves of XT/3 versus 0d, the electrical 
2 dielectric thickness, for n = 2.54, polystyrene, and for 

n = 2.25,  polystyrene, in the range .10rT<3d < 1.6n. Equation 
2 has at least one solution for all 3d, 3d > 0. A new solution 
or root X^ appears when: 

(4) W =^rf~ k = 0,1,2, . . . n . 

Henceforth k will designate the number of solutions of 
equation 2 for a given 3d. 

The integrands in equations 2.29 - 2.31 and 2.33 have 
branch points of I • 0 cr X " ± 3, (1) and (2) in Fig. 3, 
and at X = 0, (5) in Fig. 3, and poles at X - X^, . » . ,' X^. 
Upon examination of the integrals for slightly complex 3 and n, 

i 
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it is seen that the integrals are to be taken over path W_ in 

the complex \  plane of Fig* 3. 

The integrands in equations 2.32 and 2.34 have additional 

branch points at m = 0, X. = + np, (3) and (4) in Fig. 3, and in....  •• 
addition the same poles and branch points as the former integrands. 

These integrals are to be taken over W2. 

The evaluation of the k residues and the combination of these 

with the assymptotic integrations, performed in Appendices A and B, 

yield the far-zone Hertz potentials, equations 5 - 10, subject tot 

3R» 
1 
and 
3d 

where R -Y 
and 

r + z 

-2S     ^,w„-l, »  I   ^1 «0(R~*)<<0(R--L) 

-ftlnp -^|«O(R"2)«O(R°1) 

or in other words the poles are not too near the branch points. 

The terms in the summations in equations 5-10 which are 

due to the evaluation of the residues, are waves which propagate 

radially and attenuate exponentially in the z direction. These 
waves "hug" the surface and are hence called guided or surface 

waves. They result as eigenfunctions of the configuration, Fig. I, 

(excluding r • 0). •    The remaining terms will be designated 

as the radiating or compensating waves. 

The far-zone Hertz potentials ares 

Case A  Hertz dipole above the dielectric at dlz'Soq r' -0 

1 

n./Cr^z') = -^— 
(A) 

1 

4nR 
_ S. 

13R P(©,) 
+ K e 13R 

4nR 

k_ AJC1)Q<Vr,3,n,d) 1*J*-(***'-WV*J
2
-»

2
1 

y2TrX.jr 

d <• z <oo 

1 
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F Pr<z') 
6.      n2

r(r,z,z') - -±Y— 
(A) ne 

-17= 

P(92)cosOzVn^cos2©2)       i?R 
111 

R        cos Odl/n2-cos2©2) 

e 

Aj(92)Q(>.j9p,n9d)c08 
—si .  « 

0 < z<d 

Case B      Hertz dipole in the dielectric at 0< z<d, r' * 0 
IV 

- Pp(z!) P(©-J cos 
2*L-.n1

F(r,*,a».) - -^—   i  3  
(B) n e 

Oz'l/n2-cos2e.)    i0R 

  •?    e 

R17      cos (3d V n2-cos2©,) 

+   A>   A (6,)Q(XJ,p,n,d)cos(z'yn232-X.J
2) ^  C^r-C-d) V *.j2-02] ^ 

^ y2tT\jP   cos(dyrf^-x*)        e I 

d£z <oo 

8.     n2
F(r,z,z') =-4-r- 

(B) 
k 

en 

QCXj^p^n^djcosCz' 

J=l   K2nX._P      cos 

V n232-X2)cos 

2(dV n232-X2) 

(zl/nV-X2)    *V 
 J_ e 

J 
0 S z<d 

Case C      Abraham dipole on the metal surface at z' = 0, r1 

•IV 
= 0. 

9.     n/(r,z,0) =-5^ 
(C) 

P2(0)   J P(e^)      e i0RJ 

Rx"  cos( fid yin^-cos*2©,) 

k Aj(^)Q(XJfptn>d) 

fet&f    cos(dV n232-Xj2) 

(iXjr-Cz-d)!/^2)! 

d < z £oo 
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-,       Pp(0) ^T-7 Q(\T,3,n,d)cos(z V n2?2-*2) 1\T r 
10. n/(r,z,0) =-2^- >%    g      J  e J 

0 < z < d 

Wheres 

P(©) =  1 sln* -p-TTT 5 —^7"? 5— 
2n[i sine + n ^ K n -cos^G tan(0d V  n^-cos^©)] 

iTT/4  l^?.       <n2p2-V2) 
Q(X.j9P,n,d) = 

e r»»j—K». %**   •»   -—"*T 

_ ____32(n2-l) + d l^J
2p2Cn2(X.J

2-32)+(32-X.J
2n'2)] 

and Aj (©) is defined bys 

Aj(©) = 0 © > cos'^Aj 

Aj(6) = | © = cos^PAj 

Aj(©) =1 © < cos'^Aj 

and 

©x = sin"
1 ?+z • ,'2f - cos-1 r/R,, 

R 

"-^ R      =   J^rfc+ (z+z»-2d)' Pig.  2a 

©9 = sin""1-*4# = cos"1 r/ '«• 
^ R w 

R        =  y r^+(z' - d)* Pig. 2b 

RCT = yr2+(z-d)2 Pig. 2c 

: 

* 
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If it is assumed that 0z'<<3R  , the first term in 6 

vanishes and A,(90) .2 1, 

:•' 

NT "2 

The magnitudes of the fields of the guided modes attenuate 

with height z in two ways - first, the exponential or guiding 

factor exp(-z~j/\j2-02)$ second, the coefficient Aj(©)8 The 

second factor is a function of 0r while the first factor does not 
i 

depend upon the radius. It may be observed that as fir increases the 

exponential attenuation takes precedence over the coefficient's 

attenuation. Fig. 5 contains curves of the minimum radii 0r, 

for each mode, at which the field attenuates to 1 percent of 

its maximum value due to exponential attenuation, at a height 

0z less than that at" which the coefficient Aj(&) equals its 

critical value. These 0r are plotted versus 0d ' in the range 

.lOtT £ 0d ^. 1.6n and for n = 2.54 and 2.25. For 0r greater 

than these values A_(6) s 1 to within 1 percent accuracy. 

The presence of the factor A,(0) indicates that as 0r 

increases the guided wave acquires more power until at £r - oo 

the total power alloted to it has been attained. Making the 

assumption that A-(e) is identically one, for 0r greater than 

the values of Fig. 5, is the same as assuming that the guided 

wave has acquired its total power at this 0r.  It is valid to 

within .01 percent accuracy with respect to the Poynting vector. 

Since in this report the far fields are being investigated,' 

it will be assumed henceforth that 0r(=0R sin0) is greater 

than the values of Fig. 5 for each 0d being investigated. For 

this reason the notation Aj(0) will be dropped under the 

assumption that Aj(6) = 1. 

It is to be observed that, in order for the fields to 

be identical for sources at z1 = d+ and z* = d-,' P1(d+)=p2(d-)/n « 
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IV 

The Far-Zone E- and B- Fields 

The representation of the far-zone E- and B- fields are 

obtained by applying equations 2,8 and 2,9 to equations 3,5 - 
3ol0o Terms of order higher than r  are neglected.,  The 

assumption is made that 0z'<< 3& so that the radiation term 

in equation 3»6 may be neglected. 

It is convenient to represent the radiating terms in 
1*5 spherical coordinates,, The following substitutions J  are made 

in the radiating waves assuming 0R»1 in Fig, 2. 

In the phase factors: 

3R« = 3R - 3z« cosfc    0R" = &R  - 0(2d-z»)cos0 
TV 

0R • = 0R - pdcose 

In the amplitude factors: 

r/R" = cosOj = sin© = r/R = r/R« 

g * g' -24 = sin©1 = cose = z/R =fc - z^R' 

0R« = $R" * 0R 

TV 
slnO^ = r/R  ^ r/R = cose 

cosQ- = r/R17 = r/R = sine 

3R = 0R17 

The substitution of these into equations 3*5 - 3*10 after 

2.8 and 2.9 have been applied leads to the following far-zone 

fields for vertical dipoles* These are subject to the same 

restrictions as 3,5 - 3»10 in addition to 0z'<<i0R. 

Case A  Hertz dipole above the dielectric at 

d^z* ^OD, r' = 0, 
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Region 1. 

1. 
«*F                      _*Fr 
E^r^z')  = E1      + 
(A)                      (A) 

k
7   -FG 

E1J 
(A) 

..-.;'•• ,4 

A        Pr „    TT^T ^/ 5—5 -**G x —FG 
- - V [R x Bx  ] + ^   \       CiV X./-32    Bu    x   ^-ArxXj B:J] 

(A) P      J=l (A) (A) 

-—F -»Fr      A —FG 
2* B,(r„zaz') = B,     +    >      B^ = B^r^z') = Bx    +  ^ 

(A) (A) J=l    (A) 

n 0   w L /I 

K        '   FG       ^      A PG 
?2j x z - r x \jB2J 

J^T   u (A) (A) 

A    Pl(z')33sine    Ccosecos^ + S sin^3      ipCR-dcosaL 
= " $ 2nRwe [cos©    -    IS    ] e 

» PiU^p2 V*^ [i\Tr-(z+z'-2d)V\ T
2-32] 

 X       >        X Q(\j,p,n,d) e        J J 

Where: R, 6, and $ are spherical coordinates,, 
A  A        A r, ©, and z are cylindrical coordinates. 

i I; 
V * (en) 2 = the characteristic velocity of medium I. 

rf = rf(B,*.,z',d) = 3(d-z«)cos9, 

S - S(n,e,d,3) " n~2V n2-sin20 tanOdV n2-sin29). 

Region 2. 

-*P ^7    -^PG 
B2(r,z,z«) =    \       E?J 

(A) J^T    (A) 
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B2(r,Z,z«)  =     X   B2J(r<2>z'> 
(A) J^T 

GPl(z')r ^ 
= -      X >      XTQ(XTP,n,d)e 

we Y^F -£=f    J      J 
CiX-jr-Cz'-d)!/^2-?2]   • 

[cos(z T/n2gV3 

[cosCd"/ n202-\2] 

Case B-    Hertz dipole in the dielectric at 0 < z»< d, r1 

Region 1» 

k wPr kFG 
\tT9k,*') *% (r,z,z«) +   V    BjjCr.z,*') 
(B) (B) jn    (B) 

(B) 
= - V(R x\ ) •   •%   V    "^   B1J X » " * X V BU3 

r 
B1J 
(B) 

_»FG 
B1J 
(B) 

-JP -Pr ^7  _» 
6. BjfrjSyC1) • Bx (r,z,z«) +   ^> ^   B^r^^') 

(B) (E) T55f   (B) 

-     |P2
(2')g3  [sinecosQlCcosCBz'Vn^sin2^)^5-30080^ 

2rb)h eH    [cose-iS] CcosOdV^-sin^)  ] 

con e V 2nr   js4 
e 
HXjr-iz-a))/*./-^! 2 a2- 

cos (z'Vn2AT
z) 

Region 2 

IF"* 
B2(r,z9z«) 
(B) 

cos (dVAV) 

E2j(r,z,z») 
"J^T   (B) 

~.**':i*.*S&*3fe 
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= -^5 ^T* [iVn232-Xj2 tan(zV n232-Vj2) B2J x z - $ x ^jBgjJ 
n P  W " "   (B) (B) 

F «^-7  FG 
8.      B2(r,z,z') = >, 

B2j^r.z»z,> 
(B)        J^f (B) 

_»J F 
9. B (p,z,0) = 4 lim * (r,z,z«) 

(C) '       2 *  <B) 
z»-*0 

10. » (r,z,0) * 1  111    B (r,z,z«) 
(C) 2  z'-^o (B) 

- with subscripts 1 OP 2. 

It is to be noted that the radiating or compensating terms 
are waves of spherical type which attenuate as R~ ; the guided 
terms are waves of cylindrical type which attenuate as r"a. As 
r or R increases, the ratio of the magnitude of the guided wave 
to that of the radiated wave increases. 

The guided modes are elllptically polarized in region 1 with 
semi-major axis in the z direction and semi-minor axis along r. 
The eccentricity for each mode, which is independent of position, 
iss 

ii. e - **» 

I 
.P2(z«)3

2   ^ 1-KjT   . 

UHTB 1/  2nr J^l 

cos(z'V n2p2-Kj2)cos(z"/ n2p2-\j2) 

cos2<dyn232-\j2) 

Case C.  Abraham dipole on the metal at z'= 0, r' = 0. 
- 

The respective quantities are given by the following 
relationss 
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The guided modes are sometimes referred to as "slow waves" 

because their phase velocities, V- = w/^J9 
are less than the 

characteristic velocities of the region 1. 

Goubau ' . and Attwood have treated, at length, the 

field and flux distributions for waves of this type. 

- v : 

Field Patterns 

The field patterns are curves of the relative magnitudes 

(with respect to their maxima) of the e-components of the E- 

fields in region 1, as functions of e, in the range of 0 between 

0 and n/2, for 3R>> 1. The dielectric is assumed to be thin '~~ 
so that 6 = n/2 along the surface between region 1 and 2, Pig. 2» 

To obtain the formulas from which these curves are computed, it 

is necessary to convert the guided components of the fields, 

equations 4*1 - 4.10 to spherical coordinates and to recombine 

the fields at some large fixed {JR. 

It is important to notice that the field patterns defined 

above are those measured by a receiving antenna polarized and 

traveling In the 6-direction at the chosen 3R. Since the guided 

waves have R components, the patterns are not the relative 

magnitudes of the total field along the great circle of radius 

PR. It is also important to observe the manner in which these 

patterns vary with 0R. Since the radiated wave disappears at 

0 « n/2, while for most finite dielectric thicknesses, 3d, the 

surface wave attenuates rapidly with decreasing 0, the region 

of interference between the two is very small. Por these 

reasons, the principal effect of varying 8R, is to vary the 

relative magnitudes of the sections of the field patterns, at 

0 near n/2 and at 0 less than n/2,' by a factor R*. 

Figures 6-14 contain field patterns for cases A, B, 

and C, n * 2.54, 3B = 239 and various 3d and 3z*, on semi- 

logarithmic scales, with comparison patterns for dipoles above 
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or on a perfect, uncoated conductor for the same dipole heights,' 

3z', as those with the coating present0 

The dielectric constant of polystyrene was chosen as being 

typical.  PR = 239 was not only chosen as being typical but was 

chosen for proposed future experimental use„ The thickness 

3d = rwr/2 may seem peculiar, but in Pig. 4 this value is seen 

to be smaller than, but very close to, n/Y n -1, the value at 

which multimode propagation commences. Since the value 3d = nrr/2 

possesses this quality, besides being convenient for numerical 

computation, it was chosen.  It is clear that the dielectric 

thicknesses used provide good coverage of the region of single- 

mode propagation.. 

The quantities plotted in Pigs. 6-14 ares 

I    pl 
1. M(0) =    Ee   j 

1 

%J = "/2 = ®max 

Por 0d = 0    and    3d f 0. 

The main points of interest in Pigs. 6-14 are the large 

maxima or spikes at 0 = n/2 and the compressions of the rest of 

the fields with the accompanying minima between these two. These 

curves are drawn on a logarithmic scale and must be examined 
closely to appreciate the actual large magnitudes of the maxima 

at 0 • n/2 (the surface waves) compared to the rest of the pat- 

terns (the radiated waves). The ratios of the powers in the two 

components of the fields, Pigs. 20 and 21, give a better concep- 

tion of the large size of these maxima, especially if consider- 

ation is given to the fact that the surface wave is compressed 

into a small segment of space, while the radiated wave is dis- 

persed over the complete half-space. 

Por case A the field patterns for 0 < n/2 are similar to 

those without the dielectric coating for dipole heights equal to 

the dipole heights in case A minus the dielectric thickness. 
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This means that, for case A, the radiated waves are strongly- 

reflected by the dielectric surface. 

In cases B and C the effect of the dielectric is to compress 

the radiated wave into a smaller sector. 

Figure 15 is a plot of IB^ /  [BJJ versus 0 for the Pd's of 

FigSo 6-14 over the range of significant magnitudes of Ej • For 

the cases considered J = 1. These yield an indication of the magni- 

tudes of the R-components of the radiation patterns. For the thicker 

dielectrics these ratios are almost constant, indicating that, since 

E - / Elj is constant and equal to the 0 to R component ratios of 

Fig. 15 at 0 * TT/2,' E^J and E^ are essentially E^J and E^j respec- 

tively over the range of significant values of 4\. 
VI 

Formulation of the Power Equation 

The purpose of this section is to formulate the equations 

which govern the time-average flow of power across a surface 

surrounding the source p(z'). Since the far-zone approximations 

do not satisfy Maxwell's equations and since the proofs that the 

powers in the guided-and radiated-type waves are independent re- 

quire the fields to satisfy Maxwell's equations, it is necessary 
to formulate the exact fields. 

Consider E and If,' the exact fields existing in the configu- 

ration of Fig. 1,' due to a source p(z') in any of three positions 

A, B, or C of Fig. 1. 

For £r> 0 the transformation of equations 2.29 - 2.34 to the 

Hankel function form 3»1, is valid. The exact integrations, if 

they could he performed, would be taken over paths W, and W2 of 

Fig. 3» These integrations yield contributions from the poles and 

branch cuts. The application of equations 2.8 and 2.9 to the re- 

sults of the integrations yields the exact F-and B-fields. It is 

sufficient for the purposes of this section to represent the branch- 

cut contributions. ~Er,~Sr, symbolically, while the contributions 
of the poles,~E'G.,~B,G9 may be explicitly evaluated. 
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Por 0r> 0 the exact fields may be represented byg 

1.    a)   1 =~Er +~EG b)   ^'"B1 + ~BG 

2. 

a)    EG = •*5 
J=I 

r ifl/2 A  7~2—2     1 *       1 -zf£ 2P2 

e 

Region 1 
A2J eln/2tr /n232-\j2 sin(zl/n2p2-\j2 H^CXjT) 

+ zXjCos(z Vn202-\ T) H"(\Tr)] «/) How Region 2 

b)    Bl •i BJ 
J=l 

zL M(v> 4' 
-z V^j2-32 

J=l 

A1J e Region 1 

A2J n2cos(z Vn232-^j2)       Region 2 

Where Aj is a function of X.J9 B, n, d, w, z' and p(z'). 

Por 0R>>1 

3.    a)     Lim 

1 

: : 

i 

•<• 
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Where the fields on the right sides are given in section 4. 
E* and "$ are approximate solutions to Maxwell's equations 
for large 0r while E, B, Br, F Bj are exact solutions 
to Maxwell's equations for 3R>0, 

For (5r»l the guided or residue waves exist uncancelled, 
hut as 0r-*-O the functional forms of the guided waves become 
infinite. Since this is physically impossible except at discrete 
points at r z = z1 the so-called radiating or compensating 
fields, due to the branch cut contributions, must cancel the 
singular parts of the guided waves as 3r—».0. An indication of 
the cancellation is given by the appearance of the factor Aj(©) 
in the asymptotic results. Despite this cancellation the division 
in equation 1 is valid because of the linearity of Maxwell's 
equations. 

Since p(z') is arbitrary let it be chosen to be a real 
quantity, 
are real. 

It may be verified that for p(z') real A^j and A2j 

The power flowing across any surface S surrounding 
the source is given bys_.... 

p = M 
•   2n [/« (T x"5r*)dS 

/fi • (1 

r i ?T
G* + E*T

G x1r*)<JS 

«I m=l  s 

where n is the outward normal to the volume enclosed by S, 
and superscript* indicates the complex conjugate. 

It will be proved that 

5. H C {n .  (Er xB^G* 4-E^xlr*)ds] = 0 
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and 

60       Re   I* /Z*G ^^O*^.,,  rt _ ± 
2« — / n • vEj x Bm 'dS  ° J * m 

8 
3 
/ * • CEA X_SB "EBXA] d S = 

- lion J(Pk  . EJJ-'PB . EA)dV 

(The author is indebted to Dr. George Goubau for 
suggesting these proofs and recommending references 
to similar proofs„  ' ')••. 

i 

20 Some necessary formulas derived by well-known methods  are 

% f %. sk x^)ds - jfi/v -
T

A 
dv I 

S V 

- - yj JB • EA dv 

where S is a closed surface surrounding a volume V. 
E.9 B. and Eg, Bg are two independent solutions 
to Maxwell's equation in V, 
P and J are the impressed polarization and 
current densities. 
e and ft are assumed to be real in V. 
n is the outward normal to V. 

01 and the reciprocity condition. 

--11  / 7B .\-Tk .\w 
v 

Equation 6 will be proved firsts 

To this end consider the configuration of Pig, 16 agreeing 
with Pig. 1.. 

Since the cylinders S^ and S2 are semi-infinite and the 
surface z - 0 is a perfect conductor, S may be set equal to S^ 
or S2 in equation (4). It is therefore sufficient to prove 
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equation (6) over S^ or Sg. 

If E^ = E- and IC = ~Bm are substituted in equation (7) 
with the volume V, as the enclosed volume and noting that the 
volume V  Figo 16, is 30urceless, the following identity is 
arrived at© 

*-/ 
A   -* G  ^G * 

2|I J      r ' (EJ x Bm 'UkJl 

§S j  $ • CEj6 x~i^*)dS2 
= c°nstant in r = K. 

This is a constant since r-t and Pp may be independently 
varied while the other is fixed or explicitly 

10, Re 
31 / 

8-± or S2 

$ . <*l x V^)«i or 2 

TT 

- Re J t1 *l or 2 W'Vl or 2>H1^^1 or 2>]DJm = K 

where the constant Djn isi 

DJta=V      7 AU Alm exp[-z( A/-32 t/x/*2)]* 

+     I   n^ApjA^cos (z /n2p2-Xj2) cos (*vk232-\ 2 ) dz 

Specif ically, this is true for large 0r where the asymptotic 
forms of the Hankel functions are valid: 

11, 11m 
3r» 'i1 -^lk cosCrCXj-^)) 

^E. For *j t V this ls zer0 fop r * 2(Xg-X,) f- 

where q = integers, but K is a constant; hence the constant 
must be zero. Thus equation (6) is verified, since D._, J t m9 

1 
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must be zero for K to be zero for all r >o0 

Equation (5) will now be proved; 

Consider the configuration of Fig. 17. The source p(z') 

may be in region 1 or 2 or half-submerged in the conductor at 

z = os i.e., an Abraham dipole. The current I(z") on the semi- 

infinite cylinder V2 is such as to excite only the Jth guided mode, 

After utilizing the representations of the Hankel functions 

for small arguments the following representation for I(z") is 

arrived at. 

i2- w-.jfi 
.7n   <J\   ^-R2 

A1J 6 J 

2 
Apj n cos (z»Vn202-\2) 

0 < z"   ^ d. 

—» >*<  * p 
This current excites only Ej (rl9z) and B, (r^z).    The dipole 

excites E(rQ,z) and B(rQ,z)o 

The subscripts for cases A, B, or C agree throughout. It is 

assumed that I (zn)  is the total current on F2 and p(z') is the 
total polarization in V,. 

The application of equation (8) to ?«,, Fl9 noting that the 

polarization, P^ is a constant times a delta-function, leads to 

13. 
Fl 

[E x BjG - E^ x'BldF^^ = 

2 

i 
i 

0)U \jH0 

r?,(z.)Alje      J 

P2(z')A2Jcos(z' Vn 

yOT 

3?^, 

P2<°>
A2J 

v  2~- 

d^z'^oo 

0 £z'<.d 

z' = 0 

The application of equation (8) to V2, F2 in the light of 

the orthogonality condition, equation 6, gives 
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n . [?xBj - EJ* x B]d F2 = 

\i ri(z»)Ez
r(x,z")dz» 

U)  ~0 

AOT2. I 2j£ H la , L2  2 fl + n2 -2J-sin(2dYn^^Ll) 

2^n202 - V 2 

^202  U2< 

A, T2 e + ->**-— 
- 2d V\T

2 - P2 

The application of equation (8) to the sourceless region V,9 
noting that the integrations over the surfaces at infinity and 
at z = 0 vanish, and rearranging the resulting equation leads tog 

15. H / I(z«)Ez
rdz" 

H o <V> 

_ Jj£ [n2A2 d + n2    A2J siQ(2dVft2p2 - V) + 
W <J ~ i/ 2.2 .2 2v£27^? 

H. 
-2d1^j2-p2 

V5^F 

+ cou. X.j 

P^') Aije 
- z'Vx2 - 02 

P2(z') Agj cos (z» Vn202 - Xj2) 

P2<<»A2J 

d^z'sloo 

0< z»<d 

z« * 0 



FIG.   17        NARROW  CYLINDER   OF  INFINITE   HEIGHT 
SUPPORTING CURRENT I2(Z") AND SPHERICAL 
SURFACE SURROUNDING   p(Z')  SEPARATED 
BY  DISTANCE x 

- 
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- .The right side of equation (15) is not a function x or z« 
Hence, the equation is equal to a constant, G, in x and z. 

As 3x becomes large, 3x >> 1§ the quantities on the left 
side of equation (15) approach zero in the following manners 

lim 3*>> 1 E£(x,z«)  ~ 
ypT.7.2 fjr* z»' 

00 

Since G is a constant, then G = 0 and both sides of (15) are 
identically zero. 

It is enlightening to observe that the right side of (15) 
when .set equal to zero offers an alternate method of determining 
the Aj'So The author has verified the fact that the A.'s are 
identical when derived by both methods« This offers a check on 
the paths of integration chosen in Fig. 3* 

Since the denominator of the right side of equation (16) is 
well behaved, X-xX), the numerator is zeroa 

With the substitution of the right side of (12) for I(z") 
the numerator on the right side of equation 16 becomesg 

17 °      A2J n
2 ( Ej(x,z«)cos(z" ^n232-\J

2)dz» 

oo -z" /x? - 0' 
j Bj(x,z«)e 

The following integral is to be considered with reference 
to Pig, 16. 

Hence: I(z")E dz" 
Xg;      lim  G =   iim   i  = Qg 

Bx—^oo *-..  0x—»-oo     HJ(XJX) 

+ A1J      *2<x,z«)e dz" =0. 
5 
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18. / 
si 
or 
2 

=34- 

^G*, ft . [EA(r,z,z') x Bjw (r,z,z')3d S1 

or 
2 

r 

Rerr ri   ^Hl^Vl> 
or 
2 

or 
2 

lU 

J-z -zy\ 2 - 32 

dz 

or r. 

+ n2A 2J ! 
S„-|cos(z Vn202 - \T

2)dz 

r • r^ or r^ 

In the light of equation (17), equation (18) vanishes. 

Consider the sourceless region V, of Pig. 16 with the fields 

E and B existing in the region. The application of equation (7) 

to the two components Ep, ~BP and Bj , It of E and B with the 

result of equation (18) yields. 

19. I A r (ly5 z B*r)dSl = g / 
Sv 

r .  (E^G +"B*r)dS2 

m constant in r 

Since r^ and Pp may be independently varied. 

The substitution of the explicit expression for Ej, allowing 0r 

to become very large and examining the result in a manner similar 

to that used in deducing that the constant inequation (15) was 

zero, verifies that equation (19) is zero for all r. 

Combining the results of equation equations (18) and (19) 

verifies equation (5)» 

It follows that equation 4 becomes 
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20. p - Re 
F      2u 

-35- 

J  n . (F x"6*)dS 

/ » • a? x BJf*)dS 

•7 

I 

>. 

= P* + PG 

This allows the division of the power transferred across 

a surface, S, surrounding the source into two or more parts 

and hence to separately compute the powers radiated and that 

transferred across S by each guided mode. ~~ 

? 
s 

yn 
the Power Radiated by the Pinoles 

The time-average power output of the sources may be computed 

conveniently by one of two methods: 

a) the integration of the Poynting^ vector over a surface 

surrounding the source in the far zone: or b) an integration 

at the source. Both methods lead to the same results. Method 
b) is preferred for simplicity. 

22 ,=B and Let use be made of equation (6.7)  with E^ = E, Bg^B 
PB * P, noting as in (6.13) that the polarization," P,' has the 

form of a constant times a delta-function to obtains 

I- 

= lm§ 

n .  (B* x ~S)dS * - Re 4j* / P* . 
V 

B dV 

(p(z«)*   Ez(0,z«) 

*^P   Ez(0,0) 

Hertzian dipole at 
' t 0 r1 = 0, z' 

Abraham dipole 
r« = 0,* z1 * 0 
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Where S is a surface surrounding the source and V is the 

volume enclosed by S. 

If E„(0,z') is computed from equations (2.29) to (2.34) by 

the application of equations (2.8) and (2.9), and substituted in 

equation (1), and use is made of 'Hospital's Rule for evaluating 

indeterminate fractions or the well-known expression for the power 

radiated by an isolated Hertz dipole 3'   is utilized, the ex- 

pressions for P result: 

Case Ao 

2. P 
(A) 

?!<«') w 
4rre 

1 + cos[26(z'-d)] _    sin[2B(z'-d)] 
3      Ifl27IT_JT2" 8B3(z'-d)3 

4B2(z'-d)2 

+ I»  J  le^^I 

1 
i 
1 

_ 

Case B. 

3-   v
w 

_   |pp(z')|2a)np 
4ne 

+ sin2nBz' 
8p3n3z'3 

cos2nBz' 

~4?n^ 

- Hn I.A"1-n"2)e"mdcosh2mz'    dX 

n^cosh md 

Case £ 

4. 
|p9(0) |2conB3 

p      =   X-6 1  
(C) 8ne 

- Im ?  I. (I*-1 -2.  -md 
"n    ?e  dX 
cosh md 

where: 
I * 

X.3      g-3 

% + mn    tanh md 
1 
* 
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If the Integrals are closely examined and integrated 
wherever possible they are seen to result in: 

Case A 

1 5.    Im    II e-^(z"-d)dA. = 

I %3dilVfl-x2eo3[2B(z'-d>/l-x2J-n~Vn2-x2tan(BaAln2-x2)sln[2B(z'-d)'jL-xzI 

n'4(n2-x2)tan2( Bd\h2-x2) + 1 -x2 

+ _"   f»" ***** A2 ."**-« >V - <*'   (JO,,, 0, n, d) 
~? 7=1 

Case B 

at 
6.    - Im f I J^"1 - n~2)e~md cosh2mz'd\    = 

JL n3 cosh md 

fn2^! _ sin(2Bz« 6F-V     Jr?^L 
311 4Bz'n3 6B3 

_+ ^F^ cos^Bz'Vn2-!) _ sin(2Bz'^i?-l) 
"       4n332z»2 8B3z,3n3 

£L~3 

.j^l^? -r -2 cos2OzVn2-x2) n'^/n^-x2 tsn2(3d 

n"4'(n2-x2)tan2(d/n2-x2) + 1-x2 

^?)T^?J 

" v7 xJ2e'ltT/4co82(zlVn2g2"x,j2)Q(x,j^<n*d) 

7?   <£s£ cos^Cd/n^ - V*) 
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Case C 

-    Im 
| 2n3, 

"2?e"mV 
cosh md 

^    v        :»  i n~*< 

n~2/n2-x2tan2( 0d</n2-x2)-,C? 

n232-x2)tan2(pdsVn2-x2) + 1 - x2 

„    ^ x/e-^/^QCX^^n^d) 

2n'3 ^Z-w 
J*!        cos 2(d VnV-X.T

2) 

where Q(A.j,0,n,d) is defined In section III. 
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If method (a), in conjunction with equations (4.20) ' (4.1) 
a 

to (4.10) were used to compute P , it would be found that this 

yields exactly the last term in equations (5-7)°    Hence, the 
terms in the summations when substituted in equations (2-4) are 

the total powers transferred into the guided modes from the dipoles. 

It is to be noted that It is necessary to prove that the power 

can be subdivided as in (4.20) before the two divisions can be 

compared. 

As was previously observed the total power allotted to a 

guided mode (the summations terms in equations (5-7)) is not 
acquired by the mode until 0r becomes infinite„ To a good 

approximation this is true for (Jr greater than the values of Pig. 5. 

To this approximation, then, equations (2-7) may be given the 

following interpretation according to equation (4.20). P is the 

total power transferred across S.   

•5 
k 

J=l       is equal to the summation 

terms in equations (2-7) and Is equal to the power transferred 

across S by the guided modes,, where S has a minimum radius 

0R which is greater than the values of 0r in Fig. 5. P* is equal 

to the remaining terms of equations (2-7) and is equal to the power 

transferred across S by the compensating waves. 

z p = pp + V P^
0 

1. •, 

If equations (2) and (3) are evaluated at 2' = d+ and 

z*  * d-, respectively, it turns out that the powers are identical 
o 

if p2(d-) 
= n p1(d+). This verifies the previous result,. 

Figures 18 and 19 contain curves of T^ST—5* as a function 
2 P2|o>03 

of dlpole height, 0zf, for n - 2.54, for two thicknesses of 

dielectric, 0d = 0.15tr and rm/4. The integrals in equations (5-7) 
were computed by numerical integration. Comparison curves with 

i 
! 
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3d = 0 are given* 

The discontinuities at 3z = 3d in Figs. 18 and 19 are due to 

the above-mentioned discontinuities of the magnitudes of the 

sources* The total powers are seen to decrease with 3z' in the 

dielectric. The slight humps in this region are seen to occur 

at the maxima in Figs. 20 and 21« For 3z' > 3d the cowers fluctuate 

around the values for 3zr e 0. Both converge upon -r as 3z' ap^ 

proaches large values, indicating that the coupling to the guided 

modes and image fields approaches zero for large 3z'« 
G   r Figures 20 and 21 contain curves of P / P versus dipole 

height, 3z', for the same 3d's and n as Figs. 18 and 19o Figures 

20 and 21 are seen to have maxima near the dielectric and conductor 

surfaces and to decrease uniformly with 3z' and 3z'j>-3d« The 

minimum between the two maxima agrees with the minimum in Figs.. 18 

and 19 for 3d•~ 00 The two maxima correspond to the two methods 

of feeding a balanced two-wire transmission line:  (a) a concen- 
trated generator in the terminal piece, or (b) two equal concen- 
trated generators of opposite polarities in the two wires at the 

same cross sections 

For the smaller 3z', the large magnitudes of the ratios of 

Fig» 20 and 21 indicate that an overwhelming portion of the power 

radiated by the dipole is transferred to the guided or surface 

wavese  In these cases the nomenclature of compensating wave for 

the radiated component of the field is a preferred one0 

VIII 

The Attenuation Constant of a Guided Mode 

B3S to ^ finite Conductivity of the Grou^ pifln* 

The attenuation constant, a», for 3r>>l, of the J  guided 

mode due to a large but finite conductivity of the ground plane 

is derived. 

I 
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I 

i. 
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ft 
Use Is made of the following formulas 

 "V-J^£L I 

If the following procedure is followed equation (2) will 

result for cases A, B, and C. 

I 
a) Assume the fields are those of equations (4.1) - (4.10) 

except for a small component Erf" (r ,0) 

b) Assume Pjr is that of equations (7«>2) - (7»7)» 

c) Set H9J
G(r,o) = - lpJ(r,o) * - Er(r,o)/zs, 

Wheres 1 ,(r,o) is a quasi-surface current, 

d)    Compute 
as£ 

• "If   = 2 Re /   zS^rJ(r'o)l rd0 

0 

^% 7 iHw(r'o)i2rdo 
o 

e) Substitute e and b in equation 1 

2. a 
J "" V33*' (32<n2-l) • dV^^C^-n'^ 

For cases A, B, and C« 

•Lecture notes of R. D. Kodis and E. T. Kornhauser at Harvard 
University. 

t 



(1) Re = T^-71 
|l(z«)l2 

where I(z') = -  g^ . '  for "both the Abraham and Hertz dipoles 
and     h = the half-length of the Hertz dlpole = the length of 

the Abraham dlpole. 

Hence: 

(2) R e     _    4TTEP 
24032h2    o>33|p(z')l2 

This Is plotted with P in Pigs. 18 and 19. 
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V2to<ru 

Figure 22 contains a plot of 2„2 ct, as 3d varies, for 
o n p  J ' 
n = 2.54,' and»10n < 3d < 1.6n, for the existing modes 1 and 2. 
It is to be noted that the attenuation constant for each mode 
increases to a maximum and then decreases uniformly with in- 
creasing 3d. These maximum values of attenuation appear approxi- 
mately halfway between the cutoff thicknesses. The attenuation 
constants for the higher modes are lower than those for the lower 
modes since the factor d appears in the denominator of (2) and 
the higher modes appear with larger 3d. 

EC 
• t    . -   -I 

— • 

The Radiation Resistance 
... j 

The radiation resistance may be computed by referring it 
to the uniform current on the dipole, I(z'). 

f 

i 
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Apsendix A 

To Illustrate the type of integration performed to yield 

equations (3»5), (3»6), (3.7) and (3.9), consider the integral 
in (2.29), after it has been transformed by (3.1), to be inte- 

grated over W, of Fig. 3. 

(A-l)      I -.;*  I 5- -j—  H0
1(\P)MX 

J  vt+mn oanh md 

It is convenient to make the following substitutions 

(A-2) Ilnsln01 = z+ z« -2d5    R'^osG^^ • r Fig.  2a 

(A-3) \ = ?s in a 5    >/p2 - X2 • pcosa 

The Riemann sheet of interest in the \-plane of Fig. 3 

transforms into the curved strip in the a—plane, Fig. A-l. 

The transformation of the branch cuts (which are not branch cuts 

In the a-plane) are defined by sin x cosh y=T.. Under the 

assumption that 3RM cos8ji>>l so that HQ may be replaced by Its 

asymptotic form for large argument,' and substituting (A-2) and 

(A-3) in (A-l),' (A-l) becomes? 

..   . -wy  /-/-gas- ,<>,•. "m"1 """-I-"'-—1\,« 
(A-4) Wx       •LU3cosa+3n *Vn-sin%tan(3d|/n-sin* )] 

This is of the proper form for an integration by the method 

of steepest descents,'   when Rn>>d* 

The saddle-point is at a *= n/2-0. 

The path of steepest descent, W, Is defined by 

sin(x + e1)cosh y - 1 (Fig, A-l). 

If the assumption is made that the poles are not near enough 

to the a • n/2 to affect the integrand before the exponential 

i 
\ 
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* 12 factor has attenuated it to negligible value »  then the 

integration over W results ins 

lfl. i0R"  sine, 
(A 5;   4TT3« _2 1-5 r-    1-5 5- 

ipsinQj^ + 3n- ^-cos^tanCPdln^-cos^) 

and it may be observed that? 

/. • • da —  —  I • • (A-6) I = / . . . da s -  | . . . da + 2ni > Residues enclosed by 
w^ W ji—l   W and W^. 

-• When W passes through a pole, one-half the residue is_. 
1A "' TO 

included '   as a contribution to the integration* If the pole 
is included between W and W.,, the whole residue is contributed 
to (A-6), while if the pole is excluded by path W-W, 9 there is 
no contribution from ito 

It is relatively easy to verify that W passes through a 
pole when 8^ = cos 3/X.j, and from this relationship the 
coefficients Aj(O^) of the residue waves arise. The residue terms 
are evaluated by well-known methods• 

The rapid decrease of the coefficient A-CQ^) at its critical 
value is due to the fact that for large 3R the path passes very 
rapidly through the pole as ©.varies. 

The results obtained thus far have been restricted to PR" 
COS©2>>1 by virtue of the assumption that the Hankel function 
could be replaced by its asymptotic form. Actually, the re- 
striction is less strict for a good approximation and it may be 

p 
modified to 3R"»1 and ORwcose1)»l. This leaves only a 
small region near 9*  s n/^ wbere the results developed are not 
valid. The restrictions may be further modified by the followings 

* 
See  Appendix 6 for the exact condition* 
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Consider (2.29) for r = o, 91 = n/2,  3R» = pz>>l 

(A-7) \d>. 
r=o 

Integrating over half the path W (the part on and below the 
x-axis of Pig. A-l) in the a-plans, the following is obtained: 

I      i  e **(•+• «-2« (A-8)      T •    - -A- -ft 
r»0   ^ (z+z • -2d) ( i+n'Hanpnd ), 

where there are no residue terms since 0z >>1 and ©^ = n/2 > 

cos^PAjCCAjfe) =0). 

It is seen that lim  It 

^n/2 leq. r=o   91~ ^  leq. A-6 

It is therefore a reasonable assumption that equation (A-6) 

is valid for all ©., 0*^ <n/2, 0R"^>1. 

The integrations of equations (2-30), (2.31), and (2.33) are 
performed in a similar manner. 

. -4(z+z«-2d) 

•4  + mn tanh md 

. 
Performing the same transformations, (A-2) and (A-3), and 
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Appendix B 

As an Illustrative example of the application of the method 

of B. L. Van Der Waerden^ to the integration of equations (2.32) 

and (2.34), consider the following integral, obtained by applyiing 

(3.1) to (2.32). 

(B-l) 
^  ^? (4-mn )coshmz'coshmz e ~ 'v P© (X-r)dX. 

~n J_   m(4 coshmd + mn  sinh md) 
-CD 
w2 

Since the integrand of (B-l) has two extra branch cuts, 

(3) and (4) in Pig, 3, at X • + np, and one of these intersects 

the path of steepest descent for the integrand in (B-l) if the 
method of steepest descents, Appendix A,  is used, the Integration 

by the method of steepest desents is complicated. The Van Der 

Waerden method contains a systematic procedure for Integrating 

around branch cuts B 

In order to put (B-l) in Van der Waerden's form the following 

transformation is performed. 

(B-2) X « in 

Substitute the asymptotic representation for large Xr for 

H^Xr). 

The transformed u. = - IX - plane is shown in Fig. B-l where 

(1), (2), (3), (4), and (5) are the branch cuts that appear in 

the X - plane, Pig. 3« 

Then; 

(B-3) I - J  W e"T]idv       for 3r» 0d, 
w2 

Where r corresponds to Van Der Waerden's X* 

In the ji-plane the saddle-point of the n-plane becomes 

another branch point. ^ In this case there is no added complication 
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because this added branch point is coincident with the one at 

u = -i|J.   

For large r and for a contour shifted far to the right in 

Fig. B-l, the integral reduces to integrations over the branch 

cuts and poles. The former yield rapidly converging series for 

large Kr and for poles not to close to the branch points. 

Performing the integrations exactly as Van Der Waerden does, 

the following is obtained: 

k 

(B-4)    I = 2ni  27 Residue - ^ e lnpr+ 0(r"2), 

J=l 

where 0(r ) indicates a term of order r  and yields an estimate 

of the error. 

The residue are computed in the usual way and are modified 

by equation (3*2) to yield the summation terms of (3»8)^-„ 

If in equation (2.32) it is assumed that 

< 3d «Pr,' 

then $RV * PR1 • 0r and equation (3.8) is obtained. 

It has been assumed that the poles are not too near to the 

branch points. An estimate of not too near is a result of the 

Van Der Waerden method*  It is: 

(B-5)   a)    e    T-1 / 

and 

b)    e-r|n3-*k| 

^<-0(r"2)«0(r'1) 

If the integrations in Appendix A had been performed by the 

method in Appendix B, the definition of the pole being not too 

near the branch point would be found to be (B-5a). Hence equation 

(B-5a) and (B-5b) are necessary restrictions for all the equations 

(3.5) - (3.10). 

• 
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